

Electrification of the aluminium recycling route

82nd AMAP colloquium

Daniel Rader

Dr. Tobias Mertens

Otto Junker main facts

Founded: 1924 in Lammersdorf

Employees: ca. 680 (worldwide)

Turnover: approx. 150 Mio. €

Three business units:

- Melting and heat treatment furnaces
- Service
- Stainless steel foundry and machining

Material cycle

Beverage can

Raw material production

Possibilities for electrification

Melting furnaces

Comparison

Hearth furnace (twin chamber)

Max. power: 6 MW

Melting rate: 5 t/h

Capacity: 80 t

CO₂-emissions: 1,2 t/h

Coreless induction furnace (concept)

Max. power: 9 MW

Melting rate: 16 t/h

Capacity: 70 t

CO₂-emissions: 0 t/h

Challenge: Use of material with organic content

Rotary kiln

Treatment of materials with organic content

- External thermal pretreatment to remove all organic components in reduced atmosphere
- Avoiding oxidation of aluminium surface
- Reduction of loss reactions in downstream melting process
- > Increase metal yield

Rotary kiln

Thermal oxidizer

- Exhaust gas treatment
- Controlled combustion of all volatile organic compounds
- Utilization of the energy of organic components

Rotary kiln

Input Material

Source: [Schwalbe 2011] Grundlagen und Möglichkeiten der Verarbeitung von höher kontaminierten Aluminiumschrotten

Scrap grades	Contamination	Organic content [%]
Aerosol cans	Paints, Lacquers	2 - 3
UBC	Paints, Lacquers	4
Technical foils	Inks, Lacquers	7
Chips	Cutting oil emulsion	< 20
Window profiles	Polymers, Lacquers	21

- > Variation of process parameters
 - Residence time of material
 - Process gas
 - Oxygen concentration
 - Temperature
 - Volume flow

R&D center

Rotary kiln & coreless induction furnace

- Rotary kiln:
 - Max. process gas temperature: 600 °C
 - Max. throughput: 400 kg/h
- Coreless induction furnace:
 - Power: 600 kW
 - Capacity: 600 kg
 - Operating frequency melting mode: 100 Hz or 200 Hz
 - Operating frequency stirring mode: 30 Hz to 100 Hz
- Determining the optimum process parameters for thermal pretreatment and melting
- > Scaling to customer-specific requirements

Rotary kiln & coreless induction furnace

- Thermal pretreatment of organic containing material in rotary kiln
- Melting process in coreless induction furnace
- Preheating material up to 400 °C
- Up to 37 % energy savings in melting process
- Material throughput scalable from 0,1 t/h to 20 t/h
- Metal yield UBC: 98,5 %

Electrification of hearth furnace

Liquid Metal Flow Heater

- Combination of crucible inductor and electromagnetic pump
- Melt is pumped into crucible inductor for superheating
- Hybrid operation possible
- Up to 6 MW power per unit
- Chips can be charged directly into the crucible inductor
- First industrial application in cooperation with Speira GmbH

Electrification of hearth furnace

Example

capacity: 4000 kg

Power: 1500 kW

Frequency: 80 Hz

Temperature: 700 °C

Temperature rise: 4,4 K

Energy consumption (superheating): 2,5 kWh/t

Superheating throughput: 600 t/h

Electrification of heat treatment furnace

Resistance heating

Efficiency: 98 %

Power to Heat & heat storage

Features

- Use of low price periods in energy grid
- Heating of air up to 1000 °C
- Storing thermal energy in ceramic heat storage
- No direct CO₂-Emissions
- Power density up to 600 kW/m³

Power to Heat & heat storage

multiTESS plant in Jülich

Power to Heat & heat storage

Combination with heat treatment furnace

Supply of process heat for heat treatment

Chamber furnace
Process gas temperature: 600 °C

Conversion of electrial energy

Thank you for your attention!

Questions?

Daniel Rader

Research and Development

Phone: +49 2473 601 358

Mobile: +49 171 7319505

Daniel.Rader@otto-junker.com