

AMAP Kolloquium September 2022

Laser OES – the alternative to XRF and Spark OES

Andreas Kunz Kleve, September 22

shaping the future of OES - QuantoLux

- 2016 Foundation of QuantoLux GmbH in Kleve, Germany
- 2017 Pilot series QLX3
- 2019 Pilot series AlloyChecker & QLX1
- 2019 Product launch QLX3 Spark
- 2021 Expansion of shareholder base
- 2021 Foundation of the subsidiary QuantoLux Innovation GmbH near Ulm, Germany

About QuantoLux

Deliver Results!

QuantoLux was established in April 2016
in Kleve, Germany.
The company designs and manufactures
benchtop and portable optical emission
spectrometers with laser excitation.
A strong focus is to provide customer
value throughout the lifetime of the
products.

Mission Statement

We want to provide analytical solutions to our customers that deliver results! We want to be accountable for bringing true value propositions. QuantoLux follows a holistic approach to understand and improve our end-user's processes.

Products

- Stationary laser-OES
 - QLX3, QLX5, QLX9
- Portable & handheld laser-OES
 - QLX1, AlloyChecker
- Portfolio of metal apps
- First non-metal apps
- Value-adding services

Optical Emission Spectrometry (OES)

+

Laser

(Light Amplification by Stimulated Emission of Radiation)

Laser-OES

OES and the periodic table

- OES covers almost the entire PToE
- Suitable for any inorganic element analysis application
- Short measurement times
- Typically, simple sample prep
- All elements in the same regime
- Low to very low detection limits
- many different sample excitation techniques available (spark, ICP, LIBS, GD-OES, DC-Arc)
- It is the fastest and easiest technique in elemental analysis

Shaping the future laser OES – the alternative.

How does the optics work?

- Laser-optimization leads to different concepts than spark
- Optics are Czerny-Turner layout
- 10 µm entrance slit
- Different gratings for optimized resolution
- UV optic with 3600 grating
- Detectors are CCD or CMOS
- Spectral range covers UV-VIS-NIR
- Designed for all matrices
- Ultra-stable in all environments

the future laser OES – background.

first analytical use of laser plasma on surfaces, the birth of LIBS

molten metal directly analysed with the laser spark

Q-switched laser use reported, results compared with normal laser pulses

steel analysis carried out with a Q-switched laser

multiple-pulse LIBS reported for use on steel samples

QuantoLux founders develop laserversion of Magellan for analysis of concrete

- OES stands for Optical Emission Spectrometry"
 - Optical refers to radiation in the visible part of the spectrum
 - Emission represents the element specific light emissions
 - Spectrometry is the science of the electromagnetic spectrum, in our case the dispersion of emitted light

- Sources that create the plasma which emits the light:
 - Inductively coupled plasma (ICP) is a plasma torch into which a liquid sample is sprayed to create emissions
 - Electric Arc/spark is created with a high-voltage ignition where the conductive sample acts as a counter-electrode. The arc/spark between electrode and sample is the plasma.
 - Laser light creates a smaller plasma and, thus, does not destroy the sample or leave a big "burnspot" on the surface. It also does not require a conductive metalic sample or extensive sample preparation (like ICP). It is also the fastest method.

No-contact = no-cross contamination

Advantage speed – digital homogenization.

XRF

= physical homogenization **necessary**

Laser OES

= digital homogenization possible

Advantage speed – the promising alternative.

- High sample throughput
- Energy savings
- Increased efficiency of processes
- 100% quality check

laser OES - additional benefits.

- Small plasma with minimum sample destruction
- Very fast assay of result, typically in 1-5 seconds
- No lock-out elements, light and heavy elements can be analyzed equally fast
- No high-voltage or x-ray hazard, safe class 1 operation
- Simple sample preparation
- No mechanical wear (like electrodes, etc.)
- Metal and non-metal applications available
- No or very little inert gas (Argon) consumption
- No cross contamination; quick change between alloys or matrices
- Overall very safe and simple to use and the most economical solution!!

Deliver Results!

QuantoLux

the future

Advantage Lightweight – **mobility I.**

Deliver Results!

QuantoLux

the future

Advantage Lightweight – **mobility II.**

Shaping the future of OES | AMAP Kolloquium September 2022 Aachen

How big is the "burnspot?"

- Geometry & appearance similar to spark burnspot
- Typical measurement spot is around 1 mm, excited plasma area is <0.1mm
- We call this a "µBurnspot"!
- Can easily be polished away
- Requires sample prep for clean surface
- Surface roughness does not matter (unlike spark-OES where it should be rough)

Advantage small burn spots - thin parts.

Is there a difference between Laser-OES and LIBS?

LIBS and Laser OES - similarities.

- Laser-OES is same as spark-OES with the only difference in excitation: the laser replaces the spark generator with electrode
- First laser-OES has been developed in 1963; but lasers where too big and expensive – until recently
- The term LIBS summarizes all techniques used in laserinduced spectroscopy which also include absorption and fluorescence.

Advantage non-conductive samples

reason for slow analysis

established slag analysis - complex and slow.

other issues with the existing approach

today

Sample prep. – "real life" issues.

time consumption

→ Up to 40x
faster

complex analysis

→ on-site analysis

initial investment

→ no sample prep
equipment

maintenance

→ No wear parts

large grain size
- grinding speed & time
- variations in mill loading

segregated pressed pellet
- pressing & releasing speed
- pressing force
- uneven surface

the future

High end Laser Spectrometer – QLX9 Pre-series.

High end Laser Spectrometer – QLX9 Pre-series.

the future

High end Laser Spectrometer – QLX9 Pre-series.

the future At-Line setup – QLX9.

Heavy Duty Option

=

no transport to the lab

=

Results within **20 seconds**

Sample prep. – initial invest & maintenance.

initial investment	maintenance	cost per analysis
~ 300 k€ - 1 Mio. € (>150k€ sample prep. equipment + >150€ for x-ray analyser)	~ 15 k€ p.a. (annual service, sample prep. tools, х-тау excitation source, automation,)	~ 1 € / analysis (sampling equipment, transport, binder, metal ring, etc.)
150 k€ - 200 k€ (150k€-180k€ Laser OES system + 12-15k€ crusher)	3,5 k€ p.a. (annual service)	< 1cent / analysis (energy, pressurized air)

the future additional value – **precision**.

the future

slag analysis - simple and fast.

Why is laser-OES coming only now?

the future Laser OES = **Why now?**

- Laser-OES has been explored since the 1980s. Why did it take so long to come into an instrument?
- Until recently lasers where big and required eternal cooling. Now they are smaller.
- Early lasers were very powerful. Now we understand that we achieve better results with lesser power. However, we need to meet the optimum excitation potential of required elements.
- Lasers used to be veeery expensive. Many new applications and use of lasers have dramatically increased recently. This jump in production numbers had a positive effect on the cost. However, a laser soure is still approx. 10x higher in cost than a digital spark source. At QuantoLux we decided to reduce our margins to make the technology more competitive and penetrate market faster.
- Up to now, laser-OES and LIBS spectrometers were mainly offered by laser manufacturers. While they benefit from laser

the future Conclusion.

- Laser-OES is the evolutionary next step in OES
- It provides leap-frog advantages over established technologies
- It covers many different analytical applications, metals and non-metals
- For many applications very economic solutions are available
- Due to its multiple value propositions it has quickly gained acceptance
- Return-on-invest is remarkable quick
- Technology addresses economical and ecological aspects
- QuantoLux drives the technology to become the gold standard in inorganic elemental analysis
- Check out what benefits this technology can bring for your analytical needs!!

Thank you for your attention!

For more information, please contact sales@quantolux.de +49 (0) 163 176 8950 or your local QuantoLux Partner!